Affiliation:
1. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
2. Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China
3. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
Abstract
Precise regional ionospheric total electron content (TEC) models play a crucial role in correcting ionospheric delays for single-frequency receivers and studying variations in the Earth’s space environment. A particle swarm optimization neural network (PSO-NN)-based model for ionospheric TEC over China has been developed using a long-term (2008–2021) ground-based global positioning system (GPS), COSMIC, and Fengyun data under geomagnetic quiet conditions. In this study, a spatial gridding approach is utilized to propose an improved version of the PSO-NN model, named the PSO-NN-GRID. The root-mean-square error (RMSE) and mean absolute error (MAE) of the TECs estimated from the PSO-NN-GRID model on the test data set are 3.614 and 2.257 TECU, respectively, which are 7.5% and 5.5% smaller than those of the PSO-NN model. The improvements of the PSO-NN-GRID model over the PSO-NN model during the equinox, summer, and winter of 2015 are 0.4–22.1%, 0.1–12.8%, and 0.2–26.2%, respectively. Similarly, in 2019, the corresponding improvements are 0.5–13.6%, 0–10.1%, and 0–16.1%, respectively. The performance of the PSO-NN-GRID model is also verified under different solar activity conditions. The results reveal that the RMSEs for the TECs estimated by the PSO-NN-GRID model, with F10.7 values ranging within [0, 80), [80, 100), [100, 130), [130, 160), [160, 190), [190, 220), and [220, +), are, respectively, 1.0%, 2.8%, 4.7%, 5.5%, 10.1%, 9.1%, and 28.4% smaller than those calculated by the PSO-NN model.
Funder
National Natural Science Foundation of China
Research on Academician He
State Key Program of National Natural Science Foundation of China