Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network

Author:

Moldovan Ana-Maria1ORCID,Buzdugan Mircea Ion1

Affiliation:

1. Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania

Abstract

Detecting and locating faults in electrical cables has been a permanent concern regarding electrical power distribution systems. Over time, several techniques have been developed aiming to manage these faulty situations in an efficient way. These techniques must be fast, accurate, but, above all, efficient. This paper develops a new approach for detecting, locating, classifying, and predicting faults, particularly in different types of short-circuits in electrical cables, based on a robust artificial neural network technique. The novelty of this approach lies in the ability of the method to predict fault’s location and type. The proposed method uses the Matlab and Simulink platform and comprises four consecutive stages. The first one is devoted to the development of the Simulink model. The second one implies a large number of simulations in order to generate the necessary dataset for training and testing the artificial neural network model (ANN). The following stage uses the ANN to classify the location and the type of potential faults. Finally, the fourth stage consists of predicting the location and the type of future faults. In order to reduce the time and the resources of the simulation process, a virtual machine is used. The study reveals the efficiency of the method, and its ability to successfully predict faults in real-world electrical power systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3