Sparse Temporal Data-Driven SSA-CNN-LSTM-Based Fault Prediction of Electromechanical Equipment in Rail Transit Stations

Author:

Xiong Jing12,Sun Youchao1ORCID,Sun Junzhou3,Wan Yongbing4,Yu Gang3ORCID

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China

3. SILC Business School, Shanghai University, Shanghai 201800, China

4. Shanghai Rail Transit Technology Research Center, Shanghai 201103, China

Abstract

Mechanical and electrical equipment is an important component of urban rail transit stations, and the service capacity of stations is affected by its reliability. To solve the problem of predicting faults in station mechanical and electrical equipment with sparse data, this study proposes a fault prediction framework based on SSA-CNN-LSTM. Firstly, this article proposes a fault enhancement method for station electromechanical equipment based on TimeGAN, which expands and generates data that conform to the temporal characteristics of the original dataset, to solve the problem of sparse data in the original fault dataset. An SSA-CNN-LSTM model is then established to extract effective data features from low-dimensional data with insufficient feature depth through structures such as convolutional layers and pooling layers in a CNN, determine the optimal hyperparameters, automatically optimize the model network size, solve the problem of the difficult determination of the neural network model size, and achieve accurate prediction of the fault rate of station electromechanical equipment. Finally, an engineering verification was conducted on the platform screen door (PSD) systems in stations on Shanghai Metro Lines 1, 5, 9, and 10. The experiments showed that the proposed prediction method improved the RMSE by 0.000699, the MAE by 0.00042, and the R2 index by 0.109779 when predicting the fault rate data of platform screen doors on all of the lines. When predicting the fault rate data of the screen doors on a single line, the performance of the model was better than that of the CNN-LSTM model optimized with the PSO algorithm.

Funder

Ministry of Industry and Information Technology of China

Science and Technology Program of Shanghai, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3