Transmission Line Fault Classification Based on the Combination of Scaled Wavelet Scalograms and CNNs Using a One-Side Sensor for Data Collection

Author:

Altaie Ahmed Sabri1ORCID,Abderrahim Mohamed1ORCID,Alkhazraji Afaneen Anwer2

Affiliation:

1. Department of System Engineering and Automation, University Carlos III of Madrid, Avada de la Universidad 30, 28911 Leganes, Madrid, Spain

2. Department of Communication Engineering, University of Technology, Al-Sina’a St., Baghdad 10066, Iraq

Abstract

This research focuses on leveraging wavelet transform for fault classification within electrical power transmission networks. This study meticulously examines the influence of various parameters, such as fault resistance, fault inception angle, fault location, and other essential components, on the accuracy of fault classification. We endeavor to explore the interplay between classification accuracy and the input data while assessing the efficacy of combining wavelet analysis with deep learning methodologies. The data, sourced from network recorders, including phase currents and voltages, undergo a scaled continuous wavelet transform (S-CWT) to generate scalogram images. These images are subsequently utilized as inputs for pretrained deep learning models. The experiments encompass various fault scenarios, spanning distinct fault types, locations, times, and resistance values. A remarkable feature of the proposed work is the attainment of 100% classification accuracy, obviating the need for additional algorithmic enhancements. The foundation of this achievement is the deliberate selection of the right input. The decision to employ an identical number of samples as the number of scales for the CWT emerges as a pivotal factor. This approach underpins the high accuracy and renders supplementary algorithms superfluous. Furthermore, this research underscores the versatility of this approach, showcasing its effectiveness across diverse networks and scenarios. Wavelet transform, after rigorous experimentation, emerges as a reliable tool for capturing transient fault characteristics with an optimal balance between time and frequency resolutions.

Funder

Iraqi Ministry of Electricity

RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub

University Carlos III of Madrid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3