Wavelet Analysis to Detect Ground Faults in Electrical Power Systems with Full Penetration of Converter Interface Generation

Author:

Azuara Grande Luis Santiago1ORCID,Granizo Ricardo2ORCID,Arnaltes Santiago1ORCID

Affiliation:

1. Electrical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganes, Spain

2. Electric, Electronic, Automatic and Applied Physics Department, ETSIDI, Universidad Politécnica de Madrid, 28012 Madrid, Spain

Abstract

The requirements for the increased penetration of renewable energy sources in electrical power systems have led to a dominance of power electronic interfaces. As a result, short-circuit currents have been reduced by the thermal limitations of power electronics, leading to problems associated with the sensitivity, selectivity, and reliability of protective relays. Although many solutions can be found in the literature, these depend on communications and are not reliable in all grid topologies or under different types of electrical fault. Hence, in this paper, the analysis of ground fault currents and voltages using a wavelet transform in combination with a new algorithm not only detects such ground faults but also allows them to be cleared quickly and selectively in scenarios with low fault current contribution due to a full penetration converter-interface-based generation. To verify and validate the proposed protection system, different ground faults are simulated using an arc ground fault model in a grid scheme based on the IEEE nine-bus standard test system, with only grid-forming power converters as generation sources. The test system is modelled in the MATLAB/Simulink environment. Therefore, the protection relays that verify all the steps established in the new algorithm can detect and clear any ground defect. Simulations are also presented involving different fault locations to demonstrate the effectiveness of the proposed ground fault protection method.

Funder

Autonomous Community of Madrid

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3