Effect of Palm Oil–Carnauba Wax Oleogel That Processed with Ultrasonication on the Physicochemical Properties of Salted Duck Egg White Fortified Instant Noodles

Author:

Noonim Paramee,Rajasekaran BharathipriyaORCID,Venkatachalam KarthikeyanORCID

Abstract

The present study permutes edible palm oil (PO) into oleogel by incorporating carnauba wax (CW) at two different concentrations (5 g/100 g and 10 g/100 g, w/w) and processing using ultrasonication. The prepared oleogels (OG1: PO-CW (5 g/100 g); OG2: PO-CW (10 g/100 g); and OGU1: PO-CW (5 g/100 g) with ultrasonication, and OGU2: PO-CW (10 g/100 g) with ultrasonication) were compared with PO (control) to deep fry salted duck egg white (SDEW) fortified instant noodles. The impact of different frying mediums on the physicochemical properties of SDEW noodles was investigated. SDEW instant noodles that were fried using OGU and OG samples had a higher L* and b* but lower a* values than those that were fried in PO (p < 0.05). Among the oleogel-fried samples, noodles that were fried in OGU2 and OG2 effectively lowered the oil uptake and showed better cooking properties than OGU1- and OG1-fried noodles, respectively (p < 0.05). Textural attributes such as higher hardness, firmness, chewiness, tensile strength and elasticity, and lower stickiness were noticed in the samples that were fried in OGU, followed by OG and PO (p < 0.05). Scanning electron microstructure revealed a uniform and smoother surface of noodles fried in OGU and OG, whereas the PO-fried sample showed an uneven and rough surface with more bulges. Noodles were tested for fatty acid compositions, and the results found that oleogel-fried noodles retained more unsaturated fatty acids than the control (p < 0.05). During storage of the frying medium after frying the noodles, OGU and OG had higher oxidative stability with lower TBARS, PV, p-AnV, and Totox values than PO at room temperature for 12 days. Overall, using oleogel as frying media improved the physicochemical and nutritional properties of SDEW noodles. This finding could be beneficial for food industries to produce healthy fried food products for consumers.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3