A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors

Author:

Haider Arsalan12ORCID,Pigniczki Marcell1,Koyama Shotaro3,Köhler Michael H.4,Haas Lukas1ORCID,Fink Maximilian2,Schardt Michael4,Nagase Koji3,Zeh Thomas1,Eryildirim Abdulkadir5ORCID,Poguntke Tim1,Inoue Hideo3,Jakobi Martin2,Koch Alexander W.2

Affiliation:

1. Institute for Driver Assistance Systems and Connected Mobility (IFM), Kempten University of Applied Sciences, Junkersstrasse 1A, 87734 Benningen, Germany

2. Institute for Measurement Systems and Sensor Technology, Technical University of Munich, Theresienstrasse 90, 80333 Munich, Germany

3. Advanced Vehicle Research Institute, Kanagawa Institute of Technology, Shimoogino 1030, Atsugi 243-0292, Japan

4. Blickfeld GmbH, Barthstrasse 12, 80339 Munich, Germany

5. Infineon Technologies Austria AG, 4040 Linz, Austria

Abstract

In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error derror of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain.

Funder

Federal Ministry of Education and Research of Germany in the framework of VIVID

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Comparative Analysis of Radar and Lidar Technologies for Automotive Applications;Bilik;IEEE Intell. Transp. Sys. Mag.,2022

2. (2023, February 10). Yole Intelligence, with the Strong Push of Chinese Players Eager to Integrate Innovative LiDAR Technologies, the Automotive Industry will Reach $2.0B in 2027, August 2022. Available online: https://www.yolegroup.com/product/report/lidar—market–technology-trends-2022/.

3. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?;Kalra;Transp. Res. Part A Policy Pract.,2016

4. Haider, A., Pigniczki, M., Köhler, M.H., Fink, M., Schardt, M., Cichy, Y., Zeh, T., Haas, L., Poguntke, T., and Jakobi, M. (2022). Development of High-Fidelity Automotive LiDAR Sensor Model with Standardized Interfaces. Sensors, 22.

5. NIED (2023, February 15). Center for Advanced Research Facility: Evaluating the Latest Science and Technology for Disaster Resilience, to Make Society’S Standards for Performance. Available online: https://www.bosai.go.jp/e/research/center/shisetsu.html.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3