LiMOX—A Point Cloud Lidar Model Toolbox Based on NVIDIA OptiX Ray Tracing Engine

Author:

Rott Relindis1ORCID,Ritter David J.1ORCID,Ladstätter Stefan2ORCID,Nikolić Oliver1ORCID,Hennecke Marcus E.3ORCID

Affiliation:

1. Virtual Vehicle Research GbmH, 8010 Graz, Austria

2. Joanneum Research—Digital Twin Lab, 9020 Klagenfurt, Austria

3. Infineon Technologies Austria AG, 8020 Graz, Austria

Abstract

Virtual testing and validation are building blocks in the development of autonomous systems, in particular autonomous driving. Perception sensor models gained more attention to cover the entire tool chain of the sense–plan–act cycle, in a realistic test setup. In the literature or state-of-the-art software tools various kinds of lidar sensor models are available. We present a point cloud lidar sensor model, based on ray tracing, developed for a modular software architecture, which can be used stand-alone. The model is highly parametrizable and designed as a toolbox to simulate different kinds of lidar sensors. It is linked to an infrared material database to incorporate physical sensor effects introduced by the ray–surface interaction. The maximum detectable range depends on the material reflectivity, which can be covered with this approach. The angular dependence and maximum range for different Lambertian target materials are studied. Point clouds from a scene in an urban street environment are compared for different sensor parameters.

Funder

COMET K2 Competence Centers for Excellent Technologies by the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology

Austrian Federal Ministry for Labour and Economy

Province of Styria and the Styrian Business Promotion Agency

BMK within the program “ICT of the Future”

“Mobility of the Future”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3