Piezoelectric Vibration-Based Energy Harvesting Enhancement Exploiting Nonsmoothness

Author:

Ai Rodrigo,Monteiro Luciana,Monteiro Paulo,Pacheco Pedro,Savi Marcelo

Abstract

Piezoelectric vibration-based energy harvesting systems have been used as an interesting alternative power source for actuators and portable devices. These systems have an inherent disadvantage when operating in linear conditions, presenting a maximum power output by matching their resonance frequencies with the ambient source frequencies. Based on that, there is a significant reduction of the output power due to small frequency deviations, resulting in a narrowband harvester system. Nonlinearities have been shown to play an important role in enhancing the harvesting capacity. This work deals with the use of nonsmooth nonlinearities to obtain a broadband harvesting system. A numerical investigation is undertaken considering a single-degree-of-freedom model with a mechanical end-stop. The results show that impacts can strongly modify the system dynamics, resulting in an increased broadband output power harvesting performance and introducing nonlinear effects as dynamical jumps. Nonsmoothness can increase the bandwidth of the harvesting system but, on the other hand, limits the energy capacity due to displacement constraints. A parametric analysis is carried out monitoring the energy capacity, and two main end-stop characteristics are explored: end-stop stiffness and gap. Dynamical analysis using proper nonlinear tools such as Poincaré maps, bifurcation diagrams, and phase spaces is performed together with the analysis of the device output power and efficiency. This offers a deep comprehension of the energy harvesting system, evaluating different possibilities related to complex behaviors such as dynamical jumps, bifurcations, and chaos.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3