Self-powered active control of elastic and aeroelastic oscillations using piezoelectric material

Author:

Silva Tarcísio Marinelli Pereira1,De Marqui Carlos1

Affiliation:

1. Department of Aeronautical Engineering, Sao Carlos School of Engineering, University of Sao Paulo, São Paulo, Brazil

Abstract

Piezoelectric materials have been used as sensors and actuators in vibration control problems. Recently, the use of piezoelectric transduction in vibration-based energy harvesting has received great attention. In this article, the self-powered active vibration control of multilayered structures that contain both power generation and actuation capabilities with one piezoceramic layer for scavenging energy and sensing, another one for actuation, and a central substructure is investigated. The piezoaeroelastic finite element modeling is presented as a combination of an electromechanically coupled finite element model and an unsteady aerodynamic model. An electrical circuit that calculates the control signal based on the electrical output of the sensing piezoelectric layer and simultaneously energy harvesting capabilities is presented. The actuation energy is fully supplied by the harvested energy, which also powers active elements of the circuit. First, the numerical predictions for the self-powered active vibration attenuation of an electromechanically coupled beam under harmonic base excitation are experimentally verified. Then, the performance of the self-powered active controller is compared to the performance of a conventional active controller in another base excitation problem. Later, the self-powered active system is employed to damp flutter oscillations of a plate-like wing.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3