On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion

Author:

Daqaq Mohammed F.1,Masana Ravindra2,Erturk Alper3,Dane Quinn D.4

Affiliation:

1. Associate Professor Nonlinear Vibrations and Energy Harvesting Lab (NOVEHL), Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 e-mail:

2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 e-mail:

3. Assistant Professor G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0405 e-mail:

4. Professor Department of Mechanical Engineering, The University of Akron, Akron, OH 44325–3903 e-mail:

Abstract

The last two decades have witnessed several advances in microfabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power sources, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to provide a continuous power supply. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to a common belief that they can be utilized to improve performance in ambient environments. Through a review of the open literature, this paper highlights the role of nonlinearities in the transduction of energy harvesters under different types of excitations and investigates the conditions, in terms of excitation nature and potential shape, under which such nonlinearities can be beneficial for energy harvesting.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3