Molecular Dynamics of Atomic Layer Deposition: Sticking Coefficient Investigation

Author:

Kunene Thokozane JustinORCID,Tartibu Lagouge KwandaORCID,Karimzadeh Sina,Oviroh Peter Ozaveshe,Ukoba Kingsley,Jen Tien-ChienORCID

Abstract

This study focused on the atomic scale growth dynamics of amorphous Al2O3 films microscale structural relaxation. Classical Molecular Dynamics (MD) can not entirely model the challenging ALD dynamics due to the large timescales. The all-atom approach has rules based on deposition actions modelled MD relaxations that form as input to attain a single ALD cycle. MD relaxations are used to create a realistic equilibrium surface. This approach is fitting to this study as the investigation of the sticking coefficient is only at the first monolayer that includes the layering of a hydroxyl surface of alumina. The study provides insight between atomic-level numerical information and experimental measurements of the sticking coefficient related to the atomic layer deposition. The MD modeling was for the deposition of Al2O3, using trimethylaluminum (TMA) and water as precursors. The film thickness of 1.7 Å yields an initial sticking coefficient of TMA to be 4.257 × 10−3 determined from the slope of the leading front of the thickness profile at a substrate temperature of 573 K. This work adds to the knowledge of the kinetic nature of ALD at the atomic level. It provides quantitative information on the sticking coefficient during ALD.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3