Author:
Ma Li,Cao Ning,Feng Xiaoliang,Zhang Jianping,Yan Jingjing
Abstract
In a complex indoor environment, wireless signals are affected by multiple factors such as reflection, scattering or diffuse reflection of electromagnetic waves from indoor walls and other objects, and the signal strength will fluctuate significantly. For the signal strength and the distance between the unknown nodes and the known nodes are a typical nonlinear estimation problem, and the unknown nodes cannot receive all Access Points (APs) signal strength data, this paper proposes a Particle Filter (PF) indoor position algorithm based on the Kernel Extreme Learning Machine (KELM) reconstruction observation model. Firstly, on the basis of establishing a fingerprint database of wireless signal strength and unknown node position, we use KELM to convert the fingerprint location problem into a machine learning problem and establish the mapping relationship between the location of the unknown node and the wireless signal strength, thereby refocusing construct an observation model of the indoor positioning system. Secondly, according to the measured values obtained by KELM, PF algorithm is adopted to obtain the predicted value of the unknown nodes. Thirdly, the predicted value is fused with the measured value obtained by KELM to locate the position of the unknown nodes. Moreover, a novel control strategy is proposed by introducing a reception factor to deal with the situation that unknown nodes in the system cannot receive all of the AP data, i.e., data loss occurs. This indoor positioning experimental results show that the accuracy of the method is significantly improved contrasted with commonly used PF, GP-PF and other positioning algorithms.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献