Testing of Software for the Planning of a Linear Object GNSS Measurement Campaign under Simulated Conditions

Author:

Figiel Sławomir,Specht CezaryORCID,Moszyński Marek,Stateczny AndrzejORCID,Specht MariuszORCID

Abstract

The precision of a linear object measurement using satellite techniques is determined by the number and the relative position of the visible satellites by the receiver. The status of the visible constellation is described by the Dilution Of Precision (DOP). The obtained geometric coefficient values are dependent on many variables. When determining these values, field obstacles at the receiver location and satellite positions changing with time must be taken into account. Carrying out a series of surveys as part of a linear object Global Navigation Satellite System (GNSS) measurement campaign requires the optimisation problem to be solved. The manner of the inspection vehicle’s movement should be determined in such a way that the surveys are taken only within the pre-defined time frames and that the geometric coefficient values obtained at subsequent points of the route are as low as possible. The purpose of this article is to develop a software for the planning of a linear object GNSS measurement campaign to implemented in motion and taking into account the terrain model and its coverage. Additionally, it was determined how much the developed program improves DOP values on the planned route under simulated conditions. This software has no equivalent elsewhere in the world, as the current solutions for the planning of a GNSS measurement campaign, e.g., Trimble GNSS Planning, GNSS Mission Planning, or GPS Navigation Toolbox, allow the satellite constellation geometry to be analysed exclusively for specific coordinates and at a specific time. Analysis of the obtained simulation test results indicates that the campaign implementation in accordance with the pre-determined schedule significantly improves the quality of the recorded GNSS data. This is particularly noticeable when determining the position using the Global Positioning System (GPS) and GLObal NAvigation Satellite System (GLONASS) satellite constellations at the same time. During the tests conducted on the road along a three-kilometre-long route (tram loop) in Gdańsk Brzeźno, the average value of the obtained Position Dilution Of Precision (PDOP) decreased by 22.17% thanks to using the software to plan a linear object GNSS measurement campaign. The largest drop in the geometric coefficient values was noted for an area characterised by a very large number of field obstacles (trees with crowns and high buildings). Under these conditions, the PDOP value decreased by approx. 25%. In areas characterised by a small number of field obstacles (single trees in the vicinity of the track, clusters of trees and buildings located along the track), the changes in the PDOP were slightly smaller and amounted to several percent.

Funder

Gdynia Maritime University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3