SEBD: A Stream Evolving Bot Detection Framework with Application of PAC Learning Approach to Maintain Accuracy and Confidence Levels

Author:

Alothali Eiman1ORCID,Hayawi Kadhim2ORCID,Alashwal Hany1

Affiliation:

1. College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

2. College of Interdisciplinary Studies, Computational Systems, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates

Abstract

A simple supervised learning model can predict a class from trained data based on the previous learning process. Trust in such a model can be gained through evaluation measures that ensure fewer misclassification errors in prediction results for different classes. This can be applied to supervised learning using a well-trained dataset that covers different data points and has no imbalance issues. This task is challenging when it integrates a semi-supervised learning approach with a dynamic data stream, such as social network data. In this paper, we propose a stream-based evolving bot detection (SEBD) framework for Twitter that uses a deep graph neural network. Our SEBD framework was designed based on multi-view graph attention networks using fellowship links and profile features. It integrates Apache Kafka to enable the Twitter API stream and predict the account type after processing. We used a probably approximately correct (PAC) learning framework to evaluate SEBD’s results. Our objective was to maintain the accuracy and confidence levels of our framework to enable successful learning with low misclassification errors. We assessed our framework results via cross-domain evaluation using test holdout, machine learning classifiers, benchmark data, and a baseline tool. The overall results show that SEBD is able to successfully identify bot accounts in a stream-based manner. Using holdout and cross-validation with a random forest classifier, SEBD achieved an accuracy score of 0.97 and an AUC score of 0.98. Our results indicate that bot accounts participate highly in hashtags on Twitter.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme Learning Machine for Spammer Detection and Fake User Identification from Twitter;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

2. BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3