A Comparative Study of Bot Detection Techniques With an Application in Twitter Covid-19 Discourse

Author:

Antenore Marzia1,Camacho Rodriguez Jose Manuel23ORCID,Panizzi Emanuele2

Affiliation:

1. Dipartimento di Comunicazione e Ricerca Sociale, University of Rome La Sapienza, Rome, Italy

2. Dipartimento di Informatica, University of Rome La Sapienza, Rome, Italy

3. Instituto de Ciencias Matematicas (ICMAT-CSIC), Madrid, Spain

Abstract

Bot Detection is crucial in a world where Online Social Networks (OSNs) play a pivotal role in our lives as public communication channels. This task becomes highly relevant in crises like the Covid-19 pandemic when there is a growing risk of proliferation of automated accounts designed to produce misinformation content. To address this issue, we first introduce a comparison between supervised Bot Detection models using Data Selection. The techniques used to develop the bot detection models use features such as the tweets’ metadata or accounts’ Digital Fingerprint. The techniques implemented in this work proved effective in detecting bots with different behaviors. Social Fingerprint-based methods have been found to be effective with bots that behave in a coordinated manner. Furthermore, all these approaches have produced excellent results compared to the Botometer v3. Second, we present and discuss a case study related to the Covid-19 pandemic that analyses the differences in the discourse between bots and humans on Twitter, a platform used worldwide to express opinions and engage in dialogue in a public arena. While bots and humans generally express themselves alike, the tweets’ content and sentiment analysis reveal some dissimilitudes, especially in tweets concerning President Trump. When the discourse switches to pandemic management by Trump, sentiment-related values display a drastic difference, showing that tweets generated by bots have a predominantly negative attitude. However, according to our findings, while automated accounts are numerous and active in discussing controversial issues, they usually do not seem to increase exposure to negative and inflammatory content for human users.

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3