#DebateNight: The Role and Influence of Socialbots on Twitter During the 1st 2016 U.S. Presidential Debate

Author:

Rizoiu Marian-Andrei,Graham Timothy,Zhang Rui,Zhang Yifei,Ackland Robert,Xie Lexing

Abstract

Serious concerns have been raised about the role of `socialbots' in manipulating public opinion and influencing the outcome of elections by retweeting partisan content to increase its reach. Here we analyze the role and influence of socialbots on Twitter by determining how they contribute to retweet diffusions. We collect a large dataset of tweets during the 1st U.S. presidential debate in 2016 and we analyze its 1.5 million users from three perspectives: user influence, political behavior (partisanship and engagement) and botness. First, we define a measure of user influence based on the user's active contributions to information diffusions, i.e. their tweets and retweets. Given that Twitter does not expose the retweet structure -- it associates all retweets with the original tweet -- we model the latent diffusion structure using only tweet time and user features, and we implement a scalable novel approach to estimate influence over all possible unfoldings. Next, we use partisan hashtag analysis to quantify user political polarization and engagement. Finally, we use the BotOrNot API to measure user botness (the likelihood of being a bot). We build a two-dimensional "polarization map" that allows for a nuanced analysis of the interplay between botness, partisanship and influence. We find that not only are socialbots more active on Twitter -- starting more retweet cascades and retweeting more -- but they are 2.5 times more influential than humans, and more politically engaged. Moreover, pro-Republican bots are both more influential and more politically engaged than their pro-Democrat counterparts. However we caution against blanket statements that software designed to appear human dominates politics-related activity on Twitter. Firstly, it is known that accounts controlled by teams of humans (e.g. organizational accounts) are often identified as bots. Secondly, we find that many highly influential Twitter users are in fact pro-Democrat and that most pro-Republican users are mid-influential and likely to be human (low botness).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3