MCI Conversion Prediction Using 3D Zernike Moments and the Improved Dynamic Particle Swarm Optimization Algorithm

Author:

Bolourchi Pouya1ORCID,Gholami Mohammadreza1,Moradi Masoud2,Beheshti Iman3ORCID,Demirel Hasan2

Affiliation:

1. Electrical and Electronic Engineering, Final International University, Via Mersin 10, Girne 99320, Turkey

2. Electrical and Electronic Engineering, Eastern Mediterranean University, Via Mersin 10, Famagusta 99628, Turkey

3. Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Abstract

Mild cognitive impairment (MCI) conversion prediction is a vital challenge in the area of Alzheimer’s disease (AD) as it could determine possible treatment pathways for AD patients. In this work, we presented a robust MCI conversion prediction framework based on the 3D-Zernike Moment (3D-ZM) method that generates statistical features (e.g., shape, texture, and symmetry information) from 3D-MRI scans and improved dynamic particle swarm optimization (IDPSO) that finds an informative sub-set of Zernike features for MCI conversion prediction. We quantified the efficiency of the proposed prediction framework on a large sample of MCI patients including 105 progressive-MCI (pMCI) and 121 stable-MCI (sMCI) at the baseline from the ADNI dataset. Using the proposed MCI conversion prediction framework, pMCI patients were distinguished from sMCI patients with an accuracy exceeding 75% (sensitivity, 83%, and specificity, 68%), which is well comparable with the state-of-the-art MCI conversion prediction approaches. Experimental results indicate that the 3D-ZM method can represent informative statistical patterns from 3D-MRI scans and IDPSO has a great capability to find meaningful statistical features for identifying MCI patients who are at risk of conversion to the AD stage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3