A Novel Deep Dense Block-Based Model for Detecting Alzheimer’s Disease

Author:

Çelebi Selahattin Barış1ORCID,Emiroğlu Bülent Gürsel2

Affiliation:

1. Department of Computer Engineering, Graduate School of Natural and Applied Sciences, Kırıkkale University, 71450 Kırıkkale, Turkey

2. Department of Computer Engineering, Faculty of Engineering, Kırıkkale University, 71450 Kırıkkale, Turkey

Abstract

Alzheimer’s disease (AD), the most common form of dementia and neurological disorder, affects a significant number of elderly people worldwide. The main objective of this study was to develop an effective method for quickly diagnosing healthy individuals (CN) before they progress to mild cognitive impairment (MCI). Moreover, this study presents a unique approach to decomposing AD into stages using machine-learning architectures with the help of tensor-based morphometric image analysis. The proposed model, which uses a neural network built on the Xception architecture, was thoroughly assessed by comparing it with the most recent convolutional neural network (CNN) models described in the literature. The proposed method outperformed the other models in terms of performance, achieving an impressive average classification accuracy of 95.81% using the dataset. It also had very high sensitivity, specificity, accuracy, and F1 scores, with average scores of 95.41%, 97.92%, 95.01%, and 95.21%, respectively. In addition, it showed a superior classification ability compared to alternative methods, especially for MCI estimation, as evidenced by a mean area under the ROC curve (AUC) of 0.97. Our study demonstrated the effectiveness of deep-learning-based morphometric analysis using brain images for early AD diagnosis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3