Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles

Author:

Bukichev Yurii S.12ORCID,Bogdanova Lyudmila M.1,Lesnichaya Valentina A.1,Chukanov Nikita V.1,Golubeva Nina D.1,Dzhardimalieva Gulzhian I.12ORCID

Affiliation:

1. Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia

2. Department of Advanced Materials and Technologies for Aerospace Purposes, Moscow Aviation Institute (National Research University), Volokolamskoe Shosse, 4, Moscow 125993, Russia

Abstract

The introduction of nanoparticles and their homogeneous distribution in the polymer matrix, as well as their size, can have a significant effect on the mechanical properties of composite materials. In this work, we studied the mechanical characteristics of TiO2/epoxy nanocomposites with different contents and sizes of nanoparticles. The preparation of nanocomposites was carried out by a stepwise curing (at 90 and 160 °C) of ED-20 dianic epoxy resin in the presence of an aromatic hardener with the addition of titanium (IV) dioxide nanoparticles preliminarily synthesized by the plasma-chemical method. Ultrasonic dispersion was used to achieve a uniform distribution of nanoparticles in the polymer matrix. The chemical and phase composition, the structure of the as-synthesized TiO2 nanoparticles, and the resulting epoxy nanocomposites were characterized by elemental analysis, X-ray diffraction, transmission and scanning electron microscopy, and infrared spectroscopy. The mechanical properties of the nanocomposites were determined by the static tensile test, and the impact toughness was determined by the Charpy method. The glass transition temperature and thermal stability of the TiO2/epoxy nanocomposites were studied by thermal analysis methods. The formation of an interfacial layer between the TiO2 nanoparticles and an epoxy matrix has been shown for the first time by spectral methods. It is shown that the mode of curing and ultrasonic dispersion used, as well as varying the content and dispersity of the TiO2 nanoparticles, make it possible to obtain epoxy nanocomposites with simultaneously improved deformation-strength characteristics and impact strength values.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3