Abstract
Land cover change is the leading cause of global biodiversity decline. New satellite platforms allow for monitoring of habitats in increasingly fine detail, but most applications have been limited to forested ecosystems. I demonstrate the potential for detailed mapping and accurate dating of land cover change events in a highly biodiverse, Critically Endangered, shrubland ecosystem—the Renosterveld of South Africa. Using supervised classification of Sentinel 2 data, and subsequent manual verification with very high resolution imagery, I locate all conversion of Renosterveld to non-natural land cover between 2016 and 2020. Land cover change events are further assigned dates using high temporal frequency data from Planet labs. A total area of 478.6 hectares of Renosterveld loss was observed over this period, accounting for 0.72% of the remaining natural vegetation in the region. In total, 50% of change events were dated to within two weeks of their actual occurrence, and 87% to within two months. The Renosterveld loss identified here is almost entirely attributable to conversion of natural vegetation to cropland through ploughing. Change often preceded the planting and harvesting seasons of rainfed annual grains. These results show the potential for new satellite platforms to accurately map land cover change in non-forest ecosystems, and detect change within days of its occurrence. There is potential to use this and similar datasets to automate the process of change detection and monitor change continuously.
Funder
National Research Foundation
Subject
General Earth and Planetary Sciences
Reference53 articles.
1. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services;Brondizio,2019
2. FAOSTAT Land Use Domain,2020
3. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
4. Biodiversity hotspots for conservation priorities
5. Plants of the Greater Cape Floristic Region 1: The Core Cape Flora;Manning,2012
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献