Regional ecological forecasting across scales: A manifesto for a biodiversity hotspot

Author:

Slingsby Jasper A.12ORCID,Wilson Adam M.3ORCID,Maitner Brian3ORCID,Moncrieff Glenn R.24ORCID

Affiliation:

1. Department of Biological Sciences and Centre for Statistics in Ecology, Environment and Conservation University of Cape Town Cape Town South Africa

2. Fynbos Node, South African Environmental Observation Network, Centre for Biodiversity Conservation Cape Town South Africa

3. Department of Geography, Department of Environment and Sustainability University at Buffalo Buffalo New York USA

4. Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences University of Cape Town Cape Town South Africa

Abstract

Abstract Iterative near‐term ecological forecasting has great promise to provide vital information to decision‐makers while improving our ecological understanding, yet several logistical and fundamental challenges remain. The ecoinformatics requirements are onerous to develop and maintain, posing a barrier to entry for regions where funding and expertise are limited, and there are fundamental challenges to developing forecasts that fulfil information needs spanning spatial, temporal and biological scales. Using the hyperdiverse Cape Floristic Region of South Africa as a case study, we propose that developing regionally focussed sets of ecological forecasts will help resolve logistical challenges faced by under‐resourced regions of the world, while comparison or coupling of models across scales will facilitate new fundamental insights. We review information needs and existing models for the region and explore how they could be developed into a set of linked iterative near‐term forecasts. Comparing or coupling ecological forecasts from different scales within the same domain has much potential to provide new insights for decision‐makers and ecologists alike. They allow us to quantitatively link processes in space and time, potentially revealing feedbacks, interconnections and emergent properties, while providing powerful tools for testing decision scenarios and identifying trade‐offs or unanticipated outcomes. While the development of multiple or combined ecological forecasts that span scales is not trivial, there are logistical gains to be made from developing shared ecoinformatics pipelines that feed multiple models. Even where useful forecasts do not yet exist, the pipelines can be of great value in their own right, delivering frequent and up‐to‐date information to decision‐makers while providing the basis for forecast development and other scientific research. Viewed together, regionally focussed approaches to ecological forecasting present a compelling opportunity to overcome logistical constraints and to integrate across multiple scales of organisation, ultimately improving our understanding and management of ecosystems.

Funder

National Aeronautics and Space Administration

National Research Foundation

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3