Analysis of Rejuvenating Fiber Asphalt Mixtures’ Performance and Economic Aspects in High-Temperature Moisture Susceptibility

Author:

Zhang YaoORCID,Wang Ye,Kang Aihong,Wu Zhengguang,Li Bo,Zhang Chen,Wu Zhe

Abstract

Non-renewable resources such as natural stone and asphalt are in short supply. Recycling technology, with its lower cost, has been used as the primary approach to asphalt pavement maintenance engineering. The inclusion of reclaimed asphalt pavement materials in producing new asphalt pavements may increase the risk of cracking. The strength and toughness of the asphalt mixture can be reduced. In this study, Hamburg wheel tracking tests (HWTT) were performed on rejuvenated asphalt mixtures with distinct maintenance processes. Different kinds of fibers have been used as additives to reinforce the rejuvenated asphalt mixtures. The HWTT rutting curve was identified as having three stages, including the post-compaction stage, the creep stage, and the stripping stage. The three-stage rutting curve model was used to determine the intersection point between the creep stage and stripping stage. The other two feature points (i.e., the post-compaction point and the stripping inflection point) were redefined with a new calculation method. Then, the rutting effect and stripping effect were separated with these feature points. The performance and economic benefits of fiber-reinforced rejuvenated asphalt mixtures were investigated through grey correlation analysis under the three maintenance processes. The feature points of the HWTT curve and the cost of the corresponding maintenance process were selected as the impact factors. Finally, the optimal scheme was developed by analyzing the influence of each factor on both performance and economic benefits.

Funder

National Natural Science Foundation of China

High-level Talent Introduction Project of Yangzhou University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3