Determining the Relationship Among Hamburg Wheel-Tracking Test Parameters and Correlation to Field Performance of Asphalt Pavements

Author:

Yin Fan1,Chen Chen2,West Randy1,Martin Amy Epps3,Arambula-Mercado Edith4

Affiliation:

1. National Center for Asphalt Technology, Auburn, AL

2. Auburn University, Auburn, AL

3. Texas A&M University, College Station, TX

4. Texas A&M Transportation Institute, Bryan, TX

Abstract

The Hamburg wheel-tracking test (HWTT) is commonly used to evaluate the rutting resistance and moisture susceptibility of asphalt mixtures. Over the years, different test parameters have been proposed, including the traditional ones specified in AASHTO T 324 and several alternatives developed by asphalt researchers. This study was undertaken to refine the HWTT method toward enhancing its implementation as part of balanced mix design specifications for asphalt mixtures. A HWTT database was developed including test results of over 70 mixtures with a wide range of mixture components and production parameters. Data analyses were conducted to examine the relationships among various HWTT parameters, determine their correlations to field performance data, and estimate the within-laboratory repeatability of the test results. Two alternative rutting parameters, rutting resistance index ( RRI) and corrected rut depth ( CRD), were found to be advantageous over the traditional parameters of total rut depth ( TRD) and creep slope ( CS). RRI allows for direct comparison of results with different termination points, and CRD isolates the rut depth resulting from permanent deformation from that caused by stripping. Among all the rutting parameters, RRI had the best correlation to field rut depth, followed by CS, CRD, and TRD. Receiver operating characteristic analysis was conducted to determine the correspondence between HWTT results and pavement field performance related to moisture susceptibility. The analysis identified 9,000 passes as the best criterion for stripping inflection point and 2,000 passes for the alternative moisture susceptibility parameter, stripping number. Finally, the within-laboratory repeatability of HWTT rut depth measurements was determined.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference15 articles.

1. Solaimanian M., Harvey J., Tahmoressi M., Tandon V. Test Methods to Predict Moisture Sensitivity of Hot-Mix Asphalt Pavements. Moisture Sensitivity of Asphalt Pavements: A National Seminar. California Department of Transportation, Federal Highway Administration, National Asphalt Pavement Association, California Asphalt Pavement Alliance, Transportation Research Board, Washington, D.C., 2003, p.77.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3