First Observation of Blending-Zone Morphology at Interface of Reclaimed Asphalt Binder and Virgin Bitumen

Author:

Nahar S. N.1,Mohajeri M.2,Schmets A. J. M.1,Scarpas A.1,van de Ven M. F. C.2,Schitter G.3

Affiliation:

1. Program of Mechanics of Infrastructure Materials, Section of Structural Mechanics, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands.

2. Section of Road and Railway Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands.

3. Automation and Control Institute, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna, Austria.

Abstract

One of the challenges in designing recycled asphalt mixtures with a high amount of reclaimed asphalt pavement (RAP) is estimating the blending degree between RAP binder and added virgin bitumen. The extent of blending is crucial because asphalt concrete response is influenced by the final binder properties. This paper focuses on the evaluation of interaction and extent of blending between RAP binder and virgin bitumen by studying the microstructures of the blending zone with atomic force microscopy (AFM). AFM is used to probe the change of microstructural properties from a RAP binder and virgin bitumen to the blending zone of these two. Averaged microstructural properties have been observed in thin-film blends of RAP binder and pure bitumen. The morphology of the blending zone (spatial extent of about 50 μm) exhibits domains of a wide range of microstructure sizes (160 nm to 2.07 μm) and can be considered to be a completely blended new material that has been observed directly for the first time. The fully blended binder properties are found to be between those of the two individual binders, as could be inferred from the averaged microstructural properties derived from AFM images of the blending zone. This finding is also consistent with the results of mechanical tests by dynamic shear rheometer on the same materials. Finally, a design formula is proposed that relates the spatial dimensions of the blending zone to temperature and mixing time, which will eventually allow the results of this study to be extended from small-length scales up to the engineering level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3