Condition Monitoring of an All-Terrain Vehicle Gear Train Assembly Using Deep Learning Algorithms with Vibration Signals

Author:

Gnanasekaran SakthivelORCID,Jakkamputi LakshmipathiORCID,Thangamuthu MohanrajORCID,Marikkannan Senthil Kumar,Rakkiyannan JegadeeshwaranORCID,Thangavelu KannanORCID,Kotha GangadharORCID

Abstract

Condition monitoring of gear train assembly has been carried out with vibration signals acquired from an all-terrain vehicle (ATV) gearbox. The location of the defect in the gear was identified based on finite element analysis results. The vibration signals were acquired using an accelerometer under good and simulated fault conditions of the gear. The raw vibration signatures acquired from all the possible conditions of the gear train assembly were processed using the descriptive statistics tool. A set of descriptive statistical features were extracted from the raw vibrational signals. This study used a deep learning algorithm based on the tree family, which includes the decision tree, random forest, and random tree algorithms, to classify gear train conditions. Among the tree family algorithms, the random forest algorithm produced maximum classification accuracy of 99%. The decision rules were used to design an online monitoring system to display the gear condition. This study will help to implement online gear health monitoring in ATVs, ensuring the safety of drivers.

Funder

VIT University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3