Diagnostics of Early Faults in Wind Generator Bearings Using Hjorth Parameters

Author:

Santos Arthur C.1ORCID,Souza Wesley A.1ORCID,Barbara Gustavo V.12,Castoldi Marcelo F.1ORCID,Goedtel Alessandro1ORCID

Affiliation:

1. Department of Electrical Engineering, Federal University of Technology—Parana (UTFPR), Cornelio Procopio 86300-000, Brazil

2. Federal Institute of Parana (IFPR), Telêmaco Borba 84271-120, Brazil

Abstract

Machine learning techniques are a widespread approach to monitoring and diagnosing faults in electrical machines. These techniques extract information from collected signals and classify the health conditions of internal components. Among all internal components, bearings present the highest failure rate. Classifiers commonly employ vibration data acquired from electrical machines, which can indicate different levels of bearing failure severity. Given the circumstances, this work proposes a methodology for detecting early bearing failures in wind turbines, applying classifiers that rely on Hjorth parameters. The Hjorth parameters were applied to analyze vibration signals collected from experiments to distinguish states of normal functioning and states of malfunction, hence enabling the classification of distinct conditions. After the labeling stage using Hjorth parameters, classifiers were employed to provide an automatic early fault identification model, with the decision tree, random forest, support vector machine, and k-nearest neighbors methods presenting accuracy levels of over 95%. Notably, the accuracy of the classifiers was maintained even after undergoing a dimensionality reduction process. Therefore, it can be stated that Hjorth parameters provide a feasible alternative for identifying early faults in wind generators through time-series analysis.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Social Demand scholarship

Araucaria Foundation, General Superintendence of Science, Technology and Higher Education

Federal University of Technology—Paraná

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3