Hybrid Task Allocation of an AGV System for Task Groups of an Assembly Line

Author:

Hu Ya,Wu XingORCID,Zhai Jingjing,Lou Peihuang,Qian Xiaoming,Xiao HainingORCID

Abstract

An AGV system can be used to transport different-size materials in an assembly line. The hybrid task allocation problem is involved in the assembly line, where both single-AGV tasks and multi-AGV tasks exist. However, there is little research on this problem. The goal of solving this problem is to obtain a task allocation scheme with minimum idle time and maximum system throughput. Since all necessary materials must be delivered to the assembly station before the operation can start, the delivery tasks are not independent of each other in a task group serving the operation. To solve the problem above, a hybrid task allocation method based on a task binding strategy and an improved particle swarm optimization (IPSO) is proposed. Firstly, a mathematical model considering the punctuality of material delivery and the cooperative relationship between tasks is established. Secondly, a task binding strategy and four heuristic rules are devised to improve the quality of randomly- and heuristic-generated individuals in the initial population for model optimization. Thirdly, an IPSO is developed to help the optimization algorithm jump out of local optimums. Finally, a simulation is performed to verify the effectiveness of the proposed methods. The simulation results show that a better scheme can be obtained by our hybrid task allocation method, compared to conventional Genetic Algorithms and PSO algorithms.

Funder

National Natural Science Foundation of China

Natural Science Research Project of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3