A Flow Shop Scheduling Method Based on Dual BP Neural Networks with Multi-Layer Topology Feature Parameters

Author:

Mu Hui1,Wang Zinuo1,Chen Jiaqi2,Zhang Guoqiang3,Wang Shaocun1,Zhang Fuqiang2

Affiliation:

1. Jinan Vocational College, Jinan 250002, China

2. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China

3. Xi’an Electronic Engineering Research Institute, Xi’an 710100, China

Abstract

Nowadays, the focus of flow shops is the adoption of customized demand in the context of service-oriented manufacturing. Since production tasks are often characterized by multi-variety, low volume, and a short lead time, it becomes an indispensable factor to include supporting logistics in practical scheduling decisions to reflect the frequent transport of jobs between resources. Motivated by the above background, a hybrid method based on dual back propagation (BP) neural networks is proposed to meet the real-time scheduling requirements with the aim of integrating production and transport activities. First, according to different resource attributes, the hierarchical structure of a flow shop is divided into three layers, respectively: the operation task layer, the job logistics layer, and the production resource layer. Based on the process logic relationships between intra-layer and inter-layer elements, an operation task–logistics–resource supernetwork model is established. Secondly, a dual BP neural network scheduling algorithm is designed for determining an operations sequence involving the transport time. The neural network 1 is used for the initial classification of operation tasks’ priority; and the neural network 2 is used for the sorting of conflicting tasks in the same priority, which can effectively reduce the amount of computational time and dramatically accelerate the solution speed. Finally, the effectiveness of the proposed method is verified by comparing the completion time and computational time for different examples. The numerical simulation results show that with the increase in problem scale, the solution ability of the traditional method gradually deteriorates, while the dual BP neural network has a stable performance and fast computational time.

Funder

China University Industry University Research Innovation Fund

Ou Tang of Linköping University, Swede

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3