Industrial Shared Wireless Communication Systems—Use Case of Autonomous Guided Vehicles with Collaborative Robot

Author:

Stój JacekORCID,Kampen Anne-Lena,Cupek Rafał,Smołka IreneuszORCID,Drewniak Marek

Abstract

Dedicated fieldbuses were developed to provide temporal determinisms for industrial distributed real-time systems. In the early stages, communication systems were dedicated to a single protocol and generally supported a single service. Industrial Ethernet, which is used today, supports many concurrent services, but usually only one real-time protocol at a time. However, shop-floor communication must support a range of different traffic from messages with strict real-time requirements such as time-driven messages with process data and event-driven security messages to diagnostic messages that have more relaxed temporal requirements. Thus, it is necessary to combine different real-time protocols into one communication network. This raises many challenges, especially when the goal is to use wireless communication. There is no research work on that area and this paper attempts to fill in that gap. It is a result of some experiments that were conducted while connecting a Collaborative Robot CoBotAGV with a production station for which two real-time protocols, Profinet and OPC UA, had to be combined into one wireless network interface. The first protocol was for the exchange of processing data, while the latter integrated the vehicle with Manufacturing Execution System (MES) and Transport Management System (TMS). The paper presents the real-time capabilities of such a combination—an achievable communication cycle and jitter.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Analysis of M2M Cyclic Data Transfer based on ad-hoc Wireless P2P Link;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Convergent wireless real-time communicaiton using EtherCAT and OPC UA for AGV application with big data sets acquisition;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Analysis of time management models in AGV wireless communication;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3