English Speech Emotion Classification Based on Multi-Objective Differential Evolution

Author:

Yue Liya1,Hu Pei2ORCID,Chu Shu-Chuan3,Pan Jeng-Shyang34

Affiliation:

1. Fanli Business School, Nanyang Institute of Technology, Nanyang 473004, China

2. School of Computer and Software, Nanyang Institute of Technology, Nanyang 473004, China

3. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. Department of Information Management, Chaoyang University of Technology, Taichung 413310, Taiwan

Abstract

Speech signals involve speakers’ emotional states and language information, which is very important for human–computer interaction that recognizes speakers’ emotions. Feature selection is a common method for improving recognition accuracy. In this paper, we propose a multi-objective optimization method based on differential evolution (MODE-NSF) that maximizes recognition accuracy and minimizes the number of selected features (NSF). First, the Mel-frequency cepstral coefficient (MFCC) features and pitch features are extracted from speech signals. Then, the proposed algorithm implements feature selection where the NSF guides the initialization, crossover, and mutation of the algorithm. We used four English speech emotion datasets, and K-nearest neighbor (KNN) and random forest (RF) classifiers to validate the performance of the proposed algorithm. The results illustrate that MODE-NSF is superior to other multi-objective algorithms in terms of the hypervolume (HV), inverted generational distance (IGD), Pareto optimal solutions, and running time. MODE-NSF achieved an accuracy of 49% using eNTERFACE05, 53% using the Ryerson audio-visual database of emotional speech and song (RAVDESS), 76% using Surrey audio-visual expressed emotion (SAVEE) database, and 98% using the Toronto emotional speech set (TESS). MODE-NSF obtained good recognition results, which provides a basis for the establishment of emotional models.

Funder

Henan Provincial Philosophy and Social Science Planning Project

Henan Province Key Research and Development and Promotion Special Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3