Abstract
This paper presents a correction methodology for Long Short Term Memory (LSTM) based speech recognition. A strategy that validates with a reference database was developed for LSTM. It is conceptually simple but requires a large keyword database to match test templates. The correction method is based on the “most matching method” that is finding the word in which the system output is closest among the “Referenced Template Database”. Each LSTM model recognition output was corrected with the proposed new concept. Thus, system recognition performance was improved by correcting faulty outputs. The effectiveness, efficiency, and contribution of this approach to system performance were demonstrated by experiments. Tests carried out using different speech-text datasets and LSTM models yielded an average performance increase of 2.25%. With some advanced models, this ratio rises to 3.84%.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference65 articles.
1. Daily Human Activity Recognition Using Depth Silhouettes and R Transformation for Smart Home;Jalal,2011
2. Advancements of Image Processing and Vision in Healthcare
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献