Integrating Virtual, Mixed, and Augmented Reality into Remote Robotic Applications: A Brief Review of Extended Reality-Enhanced Robotic Systems for Intuitive Telemanipulation and Telemanufacturing Tasks in Hazardous Conditions

Author:

Su Yun-Peng1,Chen Xiao-Qi2,Zhou Cong1,Pearson Lui Holder1,Pretty Christopher G.1,Chase J. Geoffrey1ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering, University of Canterbury, Christchurch 8041, New Zealand

2. Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 511436, China

Abstract

There is an increasingly urgent need for humans to interactively control robotic systems to perform increasingly precise remote operations, concomitant with the rapid development of space exploration, deep-sea discovery, nuclear rehabilitation and management, and robotic-assisted medical devices. The potential high value of medical telerobotic applications was also evident during the recent coronavirus pandemic and will grow in future. Robotic teleoperation satisfies the demands of the scenarios in which human access carries measurable risk, but human intelligence is required. An effective teleoperation system not only enables intuitive human-robot interaction (HRI) but ensures the robot can also be operated in a way that allows the operator to experience the “feel” of the robot working on the remote side, gaining a “sense of presence”. Extended reality (XR) technology integrates real-world information with computer-generated graphics and has the potential to enhance the effectiveness and performance of HRI by providing depth perception and enabling judgment and decision making while operating the robot in a dynamic environment. This review examines novel approaches to the development and evaluation of an XR-enhanced telerobotic platform for intuitive remote teleoperation applications in dangerous and difficult working conditions. It presents a strong review of XR-enhanced telerobotics for remote robotic applications; a particular focus of the review includes the use of integrated 2D/3D mixed reality with haptic interfaces to perform intuitive remote operations to remove humans from dangerous conditions. This review also covers primary studies proposing Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) solutions where humans can better control or interact with real robotic platforms using these devices and systems to extend the user’s reality and provide a more intuitive interface. The objective of this article is to present recent, relevant, common, and accessible frameworks implemented in research articles published on XR-enhanced telerobotics for industrial applications. Finally, we present and classify the application context of the reviewed articles in two groups: mixed reality–enhanced robotic telemanipulation and mixed reality–enhanced robotic tele-welding. The review thus addresses all elements in the state of the art for these systems and ends with recommended research areas and targets. The application range of these systems and the resulting recommendations is readily extensible to other application areas, such as remote robotic surgery in telemedicine, where surgeons are scarce and need is high, and other potentially high-risk/high-need scenarios.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3