Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning

Author:

Zayat Abdullah,Obeed MohanadORCID,Chaaban Anas

Abstract

In this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric transmitters and receivers. We propose to use the Zadoff–Chu sequence to modulate the input signals, then utilize its correlation properties to estimate the pipe channel response. The processed signal is then fed to a DNN that extracts the features and decides whether there is a diversion or not. The proposed technique demonstrates an average classification accuracy of 90.3% (when one sensor is used) and 99.6% (when two sensors are used) on 34 inch pipes. The technique can be readily generalized for pipes of different diameters and materials.

Funder

FortisBC and MITACS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Pipeline Leak Detection Systems and Data Fusion: A Survey;Baroudi;IEEE Access,2019

2. Inspection and monitoring systems subsea pipelines: A review paper;Ho;Struct. Health Monit.,2020

3. State of the art review of inspection technologies for condition assessment of water pipes;Liu;Measurement,2013

4. International Atomic Energy Agency (2009). Ageing Management for Nuclear Power Plants, International Atomic Energy Agency. Number NS-G-2.12 in Specific Safety Guides.

5. Inspection of Cylindrical Structures Using the First Longitudinal Guided Wave Mode in Isolation for Higher Flaw Sensitivity;Lowe;IEEE Sensors J.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3