Inspection and monitoring systems subsea pipelines: A review paper

Author:

Ho Michael1ORCID,El-Borgi Sami2,Patil Devendra3,Song Gangbing1

Affiliation:

1. Smart Materials and Structures Laboratory, Department of Mechanical Engineering, The University of Houston, Houston, TX, USA

2. Mechanical Engineering Program, Texas A&M University at Qatar, Doha, Qatar

3. Department of Mechanical Engineering, BITS-Pilani KK Birla Goa Campus, Zuarinagar, Goa, India

Abstract

One of the largest movers of the world economy is the oil and gas industry. The industry generates billions of barrels of oil to match more than half the world’s energy demands. Production of energy products at such a massive scale is supported by the equally massive oil and gas infrastructure sprawling around the globe. Especially characteristic of the industry are vast networks of pipelines that traverse tens of thousands of miles of land and sea to carry oil and gas from the deepest parts of the earth to faraway destinations. With such lengths come increased chances for damage, which can have disastrous consequences owing to the hazardous substances typically carried by pipelines. Subsea pipelines in particular face increased risk due to the typically harsher environments, the difficulty of accessing deepwater pipelines, and the possibility of sea currents spreading leaked oil across a wide area. The opportunity for research and engineering to overcome the challenge of subsea inspection and monitoring is tremendous and the progress in this area is continuously generating exciting new developments that may have far reaching benefits far outside of subsea pipeline inspection and monitoring. Thus, this review covers the most often used subsea inspection and monitoring technologies as well as their most recent developments and future trends.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference198 articles.

1. The global offshore pipeline construction service market 2017 – Part I

2. Det Norske Veritas DNV. Recommended failure rates for pipelines. Energy report, Det Norske Veritas DNV, Oslo, January 2010.

3. Update of Comparative Occurrence Rates for Offshore Oil Spills

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3