Detection and Classification of Uniform and Concentrated Wall-Thinning Defects Using High-Order Circumferential Guided Waves and Artificial Neural Networks

Author:

Cirtautas Donatas1ORCID,Samaitis Vykintas1ORCID,Mažeika Liudas1,Raišutis Renaldas1ORCID

Affiliation:

1. Prof. K. Baršauskas Ultrasound Research Institute, Kaunas University of Technology Lithuania, Barsausko St. 59, LT-51423 Kaunas, Lithuania

Abstract

Pipeline structures are susceptible to corrosion, leading to significant safety, environmental, and economic implications. Existing long range guided wave inspection systems often fail to detect footprints of the concentrated defects, which can lead to leakage. One way to tackle this issue is the utilization of circumferential guided waves that inspect the pipe’s cross section. However, achieving the necessary detection resolution typically necessitates the use of high-order modes hindering the inspection data interpretation. This study presents the implementation of an ultrasonic technique capable of detecting and classifying wall thinning and concentrated defects using high-order guided wave modes. The technique is based on a proposed phase velocity mapping approach, which generates a set of isolated wave modes within a specified phase velocity range. By referencing phase velocity maps obtained from defect-free stages of the pipe, it becomes possible to observe changes resulting from the presence of defects and assign those changes to the specific type of damage using artificial neural networks (ANN). The paper outlines the fundamental principles of the proposed phase velocity mapping technique and the ANN models employed for classification tasks that use synthetic data as an input. The presented results are meticulously verified using samples with artificial defects and appropriate numerical models. Through numerical modeling, experimental verification, and analysis using ANN, the proposed method demonstrates promising outcomes in defect detection and classification, providing a more comprehensive assessment of wall thinning and concentrated defects. The model achieved an average prediction accuracy of 92% for localized defects, 99% for defect-free cases, and 98% for uniform defects.

Funder

Research Foundation of the Research Council of Lithuania

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3