Exploring Genetic and Epigenetic Changes in Lingonberry Using Molecular Markers: Implications for Clonal Propagation

Author:

Sharma Umanath12ORCID,Sikdar Arindam12ORCID,Igamberdiev Abir U.1ORCID,Debnath Samir C.2

Affiliation:

1. Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada

2. St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada

Abstract

Lingonberry (Vaccinium vitis-idaea L.) is an important and valuable horticultural crop due to its high antioxidant properties. Plant tissue culture is an advanced propagation system employed in horticultural crops. However, the progeny derived using this technique may not be true-to-type. In order to obtain the maximum return of any agricultural enterprise, uniformity of planting materials is necessary, which sometimes is not achieved due to genetic and epigenetic instabilities under in vitro culture. Therefore, we analyzed morphological traits and genetic and epigenetic variations under tissue-culture and greenhouse conditions in lingonberry using molecular markers. Leaf length and leaf width under greenhouse conditions and shoot number per explant, shoot height and shoot vigor under in vitro conditions were higher in hybrid H1 compared to the cultivar Erntedank. Clonal fidelity study using one expressed sequence tag (EST)—polymerase chain reaction (PCR), five EST—simple sequence repeat (SSR) and six genomic (G)—SSR markers revealed monomorphic bands in micropropagated shoots and plants in lingonberry hybrid H1 and cultivar Erntedank conforming genetic integrity. Epigenetic variation was studied by quantifying cytosine methylation using a methylation-sensitive amplification polymorphism (MSAP) technique. DNA methylation ranged from 32% in greenhouse-grown hybrid H1 to 44% in cultivar Erntedank under a tissue culture system. Although total methylation was higher in in vitro grown shoots, fully methylated bands were observed more in the greenhouse-grown plants. On the contrary, hemimethylated DNA bands were more prominent in tissue culture conditions as compared to the greenhouse-grown plants. The study conclude that lingonberry maintains its genetic integrity but undergoes variable epigenetic changes during in vitro and ex vitro conditions.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3