Abstract
This article presents numerical simulation of flow in the discharge object with the welded siphon and the free water level. The main numerical tool used in this study is the lattice Boltzmann method combined with the Volume-of-Fluid approach and the Smagorinski LES model. Some aspects of the numerical method are discussed, especially the formulation of the outlet boundary condition. The simulations are carried out with in-house software based on the open-source Palabos framework. Presented results are compared with the CFD simulations, based on the ANSYS CFX software applying the SST and SAS turbulence models and the free-surface flow modeling by means of the Volume-of-Fluid method. The evolution and interactions of main flow structures are analyzed using visualizations and the spectral analysis. All numerical simulations are verified by the experimental data obtained in the hydraulic laboratory with water circuit. A stationary flow regime has been visualized by means of PIV. Both the vertical planes and horizontal planes have been examined, focused mainly on the regions below and behind the siphon outlet. The results show a good agreement of calculated and measured complex flow structures, including time-averaged and instantaneous flow fields.
Funder
Ministerstvo Průmyslu a Obchodu
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献