Abstract
This article presents results of the experimental research and numerical simulations of the flow in a pumping system’s discharge object with the welded siphon. The laboratory simplified model was used in the study. Two stationary flow regimes characterized by different volume flow rates and water level heights have been chosen. The study concentrates mainly on the regions below and behind the siphon outlet. The mathematical modelling using advanced turbulence models has been performed. The free-surface flow has been carried out by means of the volume-of-fluid method. The experimental results obtained by the particle image velocimetry method have been used for the mathematical model validation. The evolution and interactions of main flow structures are analyzed using visualizations and the spectral analysis. The presented results show a good agreement of the measured and calculated complex flow topology and give a deep insight into the flow structures below and behind the siphon outlet. The presented methodology and results can increase the applicability and reliability of the numerical tools used for the design of the pump and turbine stations and their optimization with respect to the efficiency, lifetime and environmental demands.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献