Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods

Author:

Dasineh Mehdi,Ghaderi AmirORCID,Bagherzadeh MohammadORCID,Ahmadi Mohammad,Kuriqi AlbanORCID

Abstract

This study investigates the characteristics of free and submerged hydraulic jumps on the triangular bed roughness in various T/I ratios (i.e., height and distance of roughness) using CFD modeling techniques. The accuracy of numerical modeling outcomes was checked and compared using artificial intelligence methods, namely Support Vector Machines (SVM), Gene Expression Programming (GEP), and Random Forest (RF). The results of the FLOW-3D® model and experimental data showed that the overall mean value of relative error is 4.1%, which confirms the numerical model’s ability to predict the characteristics of the free and submerged jumps. The SVM model with a minimum of Root Mean Square Error (RMSE) and a maximum of correlation coefficient (R2), compared with GEP and RF models in the training and testing phases for predicting the sequent depth ratio (y2/y1), submerged depth ratio (y3/y1), tailwater depth ratio (y4/y1), length ratio of jumps (Lj/y2*) and energy dissipation (ΔE/E1), was recognized as the best model. Moreover, the best result for predicting the length ratio of free jumps (Ljf/y2*) in the optimal gamma is γ = 10 and the length ratio of submerged jumps (Ljs/y2*) is γ = 0.60. Based on sensitivity analysis, the Froude number has the greatest effect on predicting the (y3/y1) compared with submergence factors (SF) and T/I. By omitting this parameter, the prediction accuracy is significantly reduced. Finally, the relationships with good correlation coefficients for the mentioned parameters in free and submerged jumps were presented based on numerical results.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

1. Numerical study of hydraulic jump on rough beds stilling basins;Ebrahimi;J. Civ. Eng. Urban.,2013

2. Hydraulics of Open Channel Flow;Chanson,2004

3. Submerged Radial Hydraulic Jump

4. The submerged hydraulic jump in an abrupt lateral expansion

5. Submerged Hydraulic Jumps below Abrupt Expansions

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3