Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm

Author:

Tightiz LiliaORCID,Mansouri Saeedeh,Zishan FarhadORCID,Yoo JoonORCID,Shafaghatian NimaORCID

Abstract

This article presents a new method based on meta-heuristic algorithm for maximum power point tracking (MPPT) in photovoltaic systems. In this new method, the SALP Swarm Algorithm (SSA) is used instead of classic methods such as the Perturb and Observe (P&O) method. In this method, the value of the duty cycle is optimally determined in an optimization problem by SSA in order to track the maximum power. The objective function in this problem is maximizing the output power of the photovoltaic system. The proposed method has been applied on a photovoltaic system connected to the load, taking into account the effect of partial shade and different atmospheric conditions. The SSA method is compared with the Particle Swarm Optimization (PSO) algorithm and P&O methods. Additionally, we evaluated the effect of changes in temperature and radiation on solving the problem. The results of the simulation in the MATLAB/Simulink environment show the optimal performance of the proposed method in tracking the maximum power in different atmospheric conditions compared to other methods. To validate the proposed algorithm, it is compared with four important indexes: ISE, ITSE, IAE, and ITAE.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3