Affiliation:
1. Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran
2. Department of Electrical and Computer Engineering, University of Kashan, Kashan 8731753153, Iran
Abstract
The precision with which directional overcurrent relays (DOCRs) are set up establishes the microgrid customers’ access to reliable and uninterrupted electricity. In order to avoid failure in DOCRs operation, it is critical to consider a single contingency (N-1 event) on the protection optimization setting problem (POSP). However, power systems may face cascading outages or simultaneous contingencies (N-K events), which greatly expand the problem’s complexity and scale. The effect of cascading events on this problem is an open research gap. Initially, this paper proposes a novel approach to reducing the scale of simultaneous events called the N-K events scale reduction technique (N-K-ESRT). Moreover, an innovative method named fuzzy zero-violation clustering is utilized to group these contingencies. Ultimately, the DOCRs’ decision parameters are generated by three optimization algorithms, namely interior point (IPA), simulated annealing, and pattern search. In all case studies (including a real industrial network called TESKO2 feeder, the IEEE Std. 399-1997, and the IEEE 14 bus systems), the capabilities of the proposed method are effectively validated based on the DOCR’s tripping time and the algorithm’s execution time.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献