Author:
Mohamed Mohamed Ahmed Ebrahim,Nasser Ahmed Shymaa,Eladly Metwally Mohamed
Abstract
AbstractThis paper suggests an optimal maximum power point tracking (MPPT) control scheme for a grid-connected photovoltaic (PV) system using the arithmetic optimization algorithm (AOA). The parameters of the proportional-integral (PI) controller-based incremental conductance (IC) MPPT are optimally selected using AOA. To accomplish this study, a 100-kW benchmark PV system connected to a medium distribution utility is constructed and analyzed employing MATLAB/SIMULINK. The optimization framework seeks to minimize four standard benchmark performance indices, then select the best of the best among them. To verify the efficacy of the recommended methodology, a comprehensive comparison is conducted between AOA-based PI-IC-MPPT, modified incremental conductance MPPT (MIC), grey wolf optimization (GWO), genetic algorithm (GA), and particle swarm optimization (PSO)-based MPPT. The proposed control approach has achieved a reduction of 61, 3, 4.5, and 26.9% in the rise time and a decrease of 94, 84.7, 86.6, and 79.3% in the settling time compared with MIC, GWO, GA, and PSO in extracting MPPT of the proposed system, respectively.
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献