Workspace Description and Evaluation of Master-Slave Dual Hydraulic Manipulators

Author:

Sun YaoORCID,Wan Yi,Ma Haifeng,Liang Xichang

Abstract

Nuclear power plant emergency robots are robots used to respond to significant public safety incidents, such as uncontrolled radioactive sources and nuclear catastrophe leaks. However, there are no standardized evaluation criteria for the optimal design of the robots. We offer a quantitative analytic algorithm for optimizing nuclear power plant emergency robots to address this issue. The method optimizes the structural parameters of the robot in accordance with the workspace by analyzing, comparing, and evaluating the workspace. The approach comprises constructing a kinematic model of the mechanical arm and proposing an optimization algorithm based on the alpha shape to accurately describe the manipulator workspace; employing the proposed convex hull algorithm to quantitatively analyze and evaluate the workspace generated by different solutions in terms of area, volume, task demand, Structural Length Index and Global Conditioning Index; and determining the robotic arm joint parameters by selecting the optimum workspace design solution. Using the suggested algorithm, we optimize the design of the master and slave robotic arms of the nuclear power plant emergency robots. Theoretical calculations and simulation results demonstrate that the method is an effective and practical evaluation technique that not only accurately describes the workspace but also optimizes the design of the nuclear power plant emergency robots.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Major Industrial Research Projects in Shandong Province for the Conversion of Old and New Kinetic Energy

Key Research and Development Project of Jining City

Shandong Provincial Key R&D Program

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3