On Killing Vector Fields on Riemannian Manifolds

Author:

Deshmukh ShariefORCID,Belova OlgaORCID

Abstract

We study the influence of a unit Killing vector field on geometry of Riemannian manifolds. For given a unit Killing vector field w on a connected Riemannian manifold (M,g) we show that for each non-constant smooth function f∈C∞(M) there exists a non-zero vector field wf associated with f. In particular, we show that for an eigenfunction f of the Laplace operator on an n-dimensional compact Riemannian manifold (M,g) with an appropriate lower bound on the integral of the Ricci curvature S(wf,wf) gives a characterization of the odd-dimensional unit sphere S2m+1. Also, we show on an n-dimensional compact Riemannian manifold (M,g) that if there exists a positive constant c and non-constant smooth function f that is eigenfunction of the Laplace operator with eigenvalue nc and the unit Killing vector field w satisfying ∇w2≤(n−1)c and Ricci curvature in the direction of the vector field ∇f−w is bounded below by n−1c is necessary and sufficient for (M,g) to be isometric to the sphere S2m+1(c). Finally, we show that the presence of a unit Killing vector field w on an n-dimensional Riemannian manifold (M,g) with sectional curvatures of plane sections containing w equal to 1 forces dimension n to be odd and that the Riemannian manifold (M,g) becomes a K-contact manifold. We also show that if in addition (M,g) is complete and the Ricci operator satisfies Codazzi-type equation, then (M,g) is an Einstein Sasakian manifold.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3