Author:
Guediri Mohammed,Deshmukh Sharief
Abstract
<abstract><p>An odd-dimensional sphere admits a killing vector field, induced by the transform of the unit normal by the complex structure of the ambiant Euclidean space. In this paper, we studied orientable hypersurfaces in a Euclidean space that admits a unit Killing vector field and finds two characterizations of odd-dimensional spheres. In the first result, we showed that a complete and simply connected hypersurface of Euclidean space $ \mathbb{R}^{n+1} $, $ n > 1 $ admits a unit Killing vector field $ \xi $ that leaves the shape operator $ S $ invariant and has sectional curvatures of plane sections containing $ \xi $ positive which satisfies $ S(\xi) = \alpha \xi $, $ \alpha $ mean curvature if, and only if, $ n = 2m-1 $, $ \alpha $ is constant and the hypersurface is isometric to the sphere $ S^{2m-1}(\alpha^2) $. Similarly, we found another characterization of the unit sphere $ S^2(\alpha^2) $ using the smooth function $ \sigma = g(S(\xi), \xi) $ on the hypersurface.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference14 articles.
1. H. Alodan, S. Deshmukh, A characterization of spheres in a Euclidean space, New Zealand Journal of Mathematics, 36 (2007), 93–99.
2. V. N. Berestovskii, Y. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Math. J., 49 (2008), 395–407. https://doi.org/10.1007/s11202-008-0039-3
3. M. Berger, Trois remarques sur les vairétés Riemanniennes à courbure positive, C. R. Acad. Sci. Paris Ser. A-B, 263 (1966), 76–78.
4. A. L. Besse, Einstein manifolds, Heidelberg: Springer Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
5. M. P. do Carmo, Riemannian geometry, Boston: Brikhäuser, 1992.