Generalized Ricci solitons and Einstein metrics on weak $ K $-contact manifolds

Author:

Rovenski Vladimir

Abstract

<abstract><p>We study so-called "weak" metric structures on a smooth manifold, which generalize the metric contact and $ K $-contact structures and allow a new look at the classical theory. We characterize weak $ K $-contact manifolds among all weak contact metric manifolds using the property well known for $ K $-contact manifolds, as well as find when a Riemannian manifold endowed with a unit Killing vector field is a weak $ K $-contact manifold. We also find sufficient conditions for a weak $ K $-contact manifold with a parallel Ricci tensor or with a generalized Ricci soliton structure to be an Einstein manifold.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference13 articles.

1. D. E. Blair, A survey of Riemannian contact geometry, Complex Manifolds, 6 (2019), 31–64. https://doi.org/10.1515/coma-2019-0002

2. G. Ghosh, U. C. De, Generalized Ricci soliton on $K$-contact manifolds, Math. Sci. Appl. E-Notes, 8 (2020), 165–169. https://doi.org/10.3390/math9030259

3. A. Mohammed Cherif, K. Zegga, G. Beldjilali, On the generalised Ricci solitons and Sasakian manifolds, arXiv: 2204.00063 (2022).

4. P. Nurowski, M. Randall, Generalised Ricci solitons, J. Geom. Anal., 26 (2016), 1280–1345. https://doi.org/10.3390/math9030259

5. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer-Verlag, New York, 2010. https://doi.org/10.1007/978-1-4612-0873-0

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact GRA Solitons and Applications to General Relativity;Mediterranean Journal of Mathematics;2024-07-24

2. On the splitting of weak nearly cosymplectic manifolds;Differential Geometry and its Applications;2024-06

3. Foliated structure of weak nearly Sasakian manifolds;Annali di Matematica Pura ed Applicata (1923 -);2024-05-03

4. Characterization of Sasakian manifolds;Asian-European Journal of Mathematics;2024-03

5. Einstein-Type Metrics and Ricci-Type Solitons on Weak f-K-Contact Manifolds;Springer Proceedings in Mathematics & Statistics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3