Determination of Ultra-Trace Amounts of Copper in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry

Author:

Han Quan12,Yang Xiaohui1,Huo Yanyan1,Lu Jiale1,Liu Yaqi2

Affiliation:

1. School of Chemical Engineering, Xi’an University, Xi’an 710065, China

2. School of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716061, China

Abstract

A new method of dispersive liquid-liquid microextraction (DLLME) combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for the determination of ultra-trace copper. It was based on the reaction of Cu(II) with the laboratory-prepared chelating agent 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a HAc-NaAc buffer solution at pH 5.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with chlorobenzene (C6H5Cl) and acetonitrile (CH3CN) as extraction and disperser solvents, respectively. The sedimented phase containing the chelates was then determined with GFAAS. Various operating variables that may be affected by the extraction process such as the pH of the solution, the concentration of the chelating agent 5-Br-PADMA, the types and volumes of extraction and disperser solvents, the extraction time, and the centrifugation time were investigated. Under optimum conditions, the calibration curve was linear in the range from 0.02 ng/mL to 0.16 ng/mL of copper with a correlation coefficient of r = 0.9961, and the detection limit was 0.01 ng/mL based on 3Sb. The relative standard deviation for six replicate measurements of 0.05 ng /mL of copper was 3.9%. An enrichment factor (EF) of 110 was obtained. The method has the advantages of low detection limit, high sensitivity, simple operation, less consumption of organic solvents, higher enrichment factor, and environmental friendliness and was applied to the determination of trace copper in environmental water samples with satisfactory results.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Xi’an, Shaanxi Provoce, China

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3