Highly sensitive determination of copper (II) ions using fluorescence and chemiluminescence emissions of modified CdS quantum dots after it’s preconcentration by dispersive liquid–liquid microextraction

Author:

Saeedi Zohreh1,Lotfi Ali2,Hassanzadeh Javad2,Bagheri Nafiseh3

Affiliation:

1. Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2. Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

3. Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.

Abstract

Two highly sensitive and selective methods based on fluorescence (FL) and chemiluminescence (CL) emissions of 8-mercaptoquinoline-capped CdS quantum dots (MCQ-CdS QDs) were described for the determination of copper (II) after it’s preconcentration. High fluorescent CdS QDs, synthesized in an aqueous medium, generated a relatively intense CL emission in the presence of potassium permanganate as an oxidant. Furthermore, low quantities of copper (II) ions showed a remarkable quenching effect on both of the CL and FL emissions of MCQ-CdS QDs. Based on this effect, two selective and simple methods were established for Cu2+, and the detection limits of 0.28 and 0.026 ng mL−1 were obtained for the FL and CL methods, respectively. Also, due to the high propensity of MCQ to Cu2+, good selectivity was obtained and no sensible interfering effects from other metal ions were observed. To more sensitize the developed method, an efficient preconcentration process was designed based on the high-yield ultrasound-assisted temperature-controlled ionic liquid dispersive liquid–liquid microextraction (UA-TIL-DLLME) method. Under the optimum conditions, the extracted Cu2+ showed a suppressing effect on the FL and CL emissions of CdS QDs proportional to its initial concentration over the ranges of 0.008–1.4 and 0.001–1.4 ng mL−1, respectively. The limits of detection of 3.7 and 0.37 pg mL−1, respectively, were also achieved. The established methods showed great features and were satisfactorily applied to the monitoring of ultratrace Cu2+ in some different environmental samples.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3