Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method

Author:

Foudah Ahmed I.ORCID,Shakeel FaiyazORCID,Alqarni Mohammad H.,Yusufoglu Hasan. S.,Salkini Mohammad A.,Alam PrawezORCID

Abstract

Due to the lack of ecofriendly/green reversed-phase high-performance thin-layer chromatography (RP-HPTLC) methods for trans-anethole (TAL) and its simplicity over routine analytical techniques, there was a necessity to establish a suitable HPTLC methodology for the quantitative analysis of TAL. Therefore, the first objective of this research was to develop an accurate, rapid and green RP-HPTLC densitometry methodology for the quantitative analysis of TAL in essential oil, traditional and ultrasound-assisted extracts of Foeniculum vulgare Mill and commercial formulations. The second objective was to compare the traditional method of extraction of TAL with its ultrasound-assisted method of extraction. The chromatogram of TAL from essential oil and traditional and ultrasound-assisted extracts of fennel and commercial formulations was verified by recoding its single spectra at Rf = 0.31 ± 0.01 in comparison to standard TAL. The proposed analytical methodology has been found to be superior in terms of linearity, accuracy and precision compared to most of the reported analytical methods for TAL analysis. The amount of TAL in the essential oil of fennel was recorded as 8.82 mg per g of oil. The content of TAL in traditional extracts of fennel, formulation 1 (dietary supplement 1) and formulation 2 (dietary supplement 2), was recorded as 6.44, 4.88 and 4.48 mg per g, respectively. The amount of TAL in ultrasound-assisted extracts of fennel, formulation 1 and formulation 2, was recorded as 8.34, 6.46 and 5.81 mg per g, respectively. The ultrasound method of extraction of TAL was found to be better than the traditional method of extraction. The results of validation studies and phytochemical analysis showed that the proposed methodology could be efficiently utilized for the quantification of TAL in the wide range of products having TAL as a component.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3